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Optimality VIS-�A-VIS robustness in mixture models with 
heteroscedastic error

Madhura Mandala and Ganesh Duttab 

aDepartment of Statistics, Vivekananda Mahavidyalaya, Burdwan-713103, West Bengal, India; bDepartment of 
Statistics, Basanti Devi College, 147B, Rash Behari Avenue, Kolkata-700029, West Bengal, India 

ABSTRACT 
Mixture models and designs are used in situations where the response 

depends on the proportions of the factors (components). Optimum designs 
were derived for mixture models with fixed regression parameters under 
homoscedastic error variance by several authors. In this paper, an attempt 
has been made to find D- and A-optimum designs for the estimation of 
model parameters with heteroscedastic error variance. It is assumed that 
the error variance has constant value for all points equidistant from the 
center of the design. Equivalence theorem plays an important role in this 
investigation. Robustness of the standard optimum designs in the homo
scedastic case under changes in the error variances has also been studied. 
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1. Introduction

In a mixture experiment, the response depends on the proportions x1, :::, xq of a number of com
ponents varying in the factor space

X : xi � 0, i ¼ 1, 2, :::, q;
X

xi ¼ 1
n o

: (1.1) 

Schef�e (1958, 1963) introduced canonical models of different degrees to represent the response func
tion gx: He also introduced Simplex Lattice Designs and Simplex Centroid Designs in such situations. 
Optimality of mixture designs for the estimation of parameters of the response function was considered 
by several authors, see e.g. Kiefer (1961), Galil and Kiefer (1977), Draper and Pukelsheim (1999). 
Optimum design for the estimation of some non-linear function of the parameters of a mixture model 
has also been considered (see e.g. Pal and Mandal (2006)). Optimality aspects of mixture designs can be 
found in the recent monograph by Sinha et al. (2014).

Mixture models can be applied in experiments of different fields such as fruit punch with water
melon, pineapple and orange; chick feeding with protein, fat and carbohydrate; concrete batches where 
hardness is measured from a cement consisting of three primary raw materials : clay, limestone and fly 
ash ; surface resistivity of paper coatings of different blends of chemicals etc. (see Cornell (1977)). In 
most of these investigations, it was assumed that the error variance is homoscedastic. However, in 
many practical situations the error variance, as in response surface model, may be heteroscedastic and 
may well be a function of the mixture components. Optimality in the context of response surface model 
under such circumstances has been considered by several authors (see e.g. Atkinson and Cook (1995), 
Dette and Wong (1996), Rodrı�guez and Ortiz (2005)). Analysis of experiments with heteroscedastic 
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error variance in a mixture model has been considered in Cornell (2002). Cornell (2002) considered 
three distinct variances corresponding to three sets of design points with different radii and compared 
the unweighted and weighted estimates of the variance components using data from an experiment con
sisting of ground beef and peanut meal patties to illustrate the comparison. For a more detailed discus
sion see Cornell (2002). However the author did not consider the optimality aspect of the design. Yan, 
Zhang, and Peng (2017) have also considered heteroscedastic error variance of exponential nature for 
additive mixture model and studied D- and A-optimality for the estimation of the model parameters. It 
seems Yan, Zhang, and Peng (2017) first considered the problem of determining optimum designs for 
mixture models with heteroscedastic error variance. They worked with three types of additive mixture 
models in canonical form of degree one (cf. Becker (1968, 1978)). Again, they used simple exponential 
function as error function. They established that under certain conditions, the direct sum of D- and A- 
optimal designs for homogeneous models in sub-mixture system is also D- and A-optimum for the 
additive mixture model. In this paper, we have considered the classical mixture model in canonical 
form of degree 1 and 2 introduced by Schef�e (1968) and D- and A-optimal designs have been investi
gated. Moreover, we have considered a particular form of error function which is constant for all points 
equidistant from the center of the design.

In this paper, assuming an error function which takes constant values at points equidistant 
from the centroid of the simplex, optimum designs are derived using D- and A-optimality crite
ria. It will be seen that, for the error functions assumed, the problem is invariant with respect to 
the components. Because of the invariance, for the two optimality criteria considered, we restrict 
to the class of invariant designs. Restricting to the invariant subclass D0 of the (q, m) simplex 
designs, optimum weights at the support points are determined using D- and A- optimality crite
ria. A (q, m) simplex design for q components consists of points defined by the following coord
inate settings: the proportions assumed by each components takes the mþ 1 equally spaced 
values from 0 to 1 i.e. xi ¼ 0, 1

m , 2
m , :::, 1 for i ¼ 1, 2, :::, q satisfying 

Pq
i¼1xi ¼ 1: Optimality of 

such designs in the entire class is then examined using equivalence theorem. Moreover, the per
formance of optimum designs under homoscedastic error variance has been examined when the 
true error variance is heteroscedastic. Only the first and second order models are considered.

The paper is organized as follows. In Sec. 2, the problem will be formulated and D-and A- 
optimum designs will be derived in a subclass D0 of the (q, m) simplex designs. Optimality of the 
derived designs will be examined in the whole class in Sec. 3. In Sec. 4, robustness of the opti
mum designs with homoscedastic error variance will be investigated, when the true error variance 
is heteroscedastic. The concluding remarks are presented in Sec. 5.

2. Optimum designs in D0

In this section, we first derive the expression of the criterion function for D-and A-optimality cri
teria under heteroscedastic error variance. We restrict to first and second degree mixture models 
in canonical form as introduced by Schef�e (1958):

EðyjxÞ ¼
X

bixi, (2.1) 

EðyjxÞ ¼
X

bixi þ
X

i<j
bijxixj: (2.2) 

Instead of assuming an uncorrelated homoscedastic error variance, the following uncorrelated 
but heteroscedastic error variance is assumed which is constant at all points equidistant from the 
centroid of the simplex:

VðyjxÞ ¼
1

kðxÞ
¼ exp ððx − x0Þ

0
ðx − x0ÞÞ (2.3) 
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x 2 X ¼ xi � 0, i ¼ 1, 2, :::, q;
X

xi ¼ 1
n o

, x0 ¼ ð1=q, 1=q, :::, 1=qÞ0: (2.4) 

We first restrict our considerations to the sub-class D0 of (q, m) simplex lattice designs and 
derive D- and A-optimum designs in this class. Optimality of such designs in the whole class is 
then examined using equivalence theorem.

2.1. First degree model

For the first degree model (2.1), consider a design with support points only at the vertices of the 
simplex. Since for the variance function (2.3), all the support points have the same variance, the 
information matrix remains same as in the homoscedastic case except for a scalar multiple. 
Hence the optimum design in the homoscedastic case remains optimum for the error variance 
assumed here for all the optimality criteria and in particular with respect to D- and A-optimality 
criteria.

2.2. Second degree model

Consider a second degree model in canonical form with q components given by (2.2). Because of 
the constraint 

P
xi ¼ 1, model (2.2) can also be expressed as

gx ¼
X

hiixi xi −
1
2

� �

þ
X

i<j
hijxixj ¼ f 0ðxÞh (2.5) 

where h ¼ ðh11, h22, :::, hqq, h12, h13, :::, hq−1,qÞ
0 and the parameters in (2.2) and (2.5) are related by

b ¼ b1, b2, :::, bq, b12, b13, :::, bq−1,q
� �0

¼ Lh (2.6) 

h and b are parameter vectors corresponding to the models (2.2) and (2.5) respectively; L is 
given by

L ¼
1
2
Iq 0

−P ICðq,2Þ

0

@

1

A (2.7) 

where Cða, bÞ stands for the usual binomial coefficient involving positive integers, a � b > 0:
Here P is a Cðq, 2Þ � q matrix whose (i, j)-th row (i < j) has element 1 in the ith and jth place 
and zero elsewhere i.e.

PCðq,2Þ�q ¼

Row no:
ð1, 2Þ
ð1, 3Þ
ð1, 4Þ

..

.

ðq − 1, qÞ

1 1 0 0 ::: 0 0
1 0 1 0 ::: 0 0
1 0 0 1 ::: 0 0
..
. ..

. ..
. ..

. ..
. ..

. ..
.

0 0 0 0 ::: 1 1

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

:

Consider a design n which puts equal mass a
q at each of the vertex points and a mass 1−a

Cðq,2Þ at 
each of the midpoints of the edges of the simplex. Let us denote such a subclass of designs by 
D0: Now the error function assumes two distinct values namely r2

1 at the vertex points and r2
2 at 

the midpoints of the edges with

r2
i ¼

1
kðxiÞ

¼ exp ðxi − x0Þ
0
ðxi − x0Þ

� �
; i ¼ 1, 2 (2.8) 
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where x1 and x2 correspond to the vertex points and midpoints of the edges respectively. The 
moment matrix of such weighted (q,2) simplex design for model (2.5), with heteroscedastic error 
variances (2.8), is given by

M ¼ Diag
1

4r2
1

10q,
1

16r2
2

10Cðq,2Þ

� �

Diag
a

q
10q,

1 − a

Cðq, 2Þ
10Cðq,2Þ

� �

¼ Diag
a

4qr2
1

10q,
1 − a

16Cðq, 2Þr2
2

10Cðq,2Þ

� � (2.9) 

For the D-optimum design, we have to maximize the determinant of (2.9). Now

DetðMÞ ¼
a

4qr2
1

� �q
�

1 − a

16Cðq, 2Þr2
2

� �Cðq,2Þ
(2.10) 

and (2.10) is maximized at

a ¼ a0D ¼
q

Cðqþ 1, 2Þ
¼

2
qþ 1

(2.11) 

and the maximum value is given by

DetðMÞ ¼
1

2qð2qþ1Þðqðqþ 1ÞÞ
qðqþ1Þ

2 r
2q
1 r

qðq−1Þ
2

(2.12) 

Here we see that all the support points have equal weights, as is known otherwise also since 
the number of distinct support points is same as the number of parameters in the model. 
Moreover, it is independent of the form of the error function. Now it is only to check whether 
such a design n�D in D0 is D-optimum in the entire class or not for both models (2.2) and (2.5). 
This will be investigated in Sec. 3.

For the A-optimality criterion also, we first find A-optimum design n�A in D0 minimizing 
tr:ðM−1Þ, where M is given by (2.9). This will provide optimum design in D0 for the estimation 
of the parameters of the model (2.5). Then the status of this n�A will be examined in the entire 
class in Sec. 3. Now, it is easy to see that, tr:ðM−1Þ is minimized at

a ¼ a0A ¼
r1

r1 þ ðq − 1Þr2
(2.13) 

and the minimum value is given by

tr:ðM−1Þ ¼ 4q2ðr1 þ ðq − 1Þr2Þ
2
: (2.14) 

It is clearly seen that the optimum weights are not same at all the support points of the (q,2) 
simplex design as in D-optimum design. This is true in the case of homoscedastic error variance 
also. Again, in the case of D-optimality criterion, optimum weights are independent of the error 
variance structure while, for the A-optimality criterion, it depends on the error variance. Such a 
design is A-optimum in D0 for the estimation of the parameters of the model (2.5). To find A- 
optimum design for the estimation of the parameters of the original model (2.2), we have to find 
a design minimizing tr:ðDðbbÞÞ: Now because of the relation (2.6), we have

tr:ðDðbbÞÞ ¼ tr:ðLDðbhÞL0Þ ¼ tr:ðM−1L0LÞ: (2.15) 

where L is given in (2.7). Now

L0L ¼
4q − 7

4
Iq þ Jq −P0

−P ICðq,2Þ

0

@

1

A; Jq ¼ 1q10q (2.16) 
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so that

tr:ðDðbbÞÞ ¼ tr:ðM−1L0LÞ ¼
ð4q − 3Þq2r2

1
a

þ
4q2ðq − 1Þ2r2

2
1 − a

� q2 r1
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4q − 3

p
þ 2ðq − 1Þr2

� �2
(2.17) 

Equality holds in (2.17) at

a ¼ a�0A ¼
r1ð4q − 3Þ1=2

r1ð4q − 3Þ1=2
þ 2r2ðq − 1Þ

: (2.18) 

Thus a weighted (q,2) simplex design with a�0A given by (2.18) is A-optimum in D0 for the 
estimation of parameters of the model (2.2). In the next section, optimality of the design n��A will 
be examined in the entire class of designs using equivalence theorem.

3. Verification of optimality

In Sec. 2, for the second degree model, we have derived optimum designs using D- and A-opti
mality criteria in the subclass D0 of designs with support points only at the vertices and the mid
points of the edges of the simplex. In this section, we will examine the status of these designs in 
the entire class. Equivalence theorem plays a key role in this investigation. Because of the com
plexity of the problem due to heteroscedasticity, it is not possible to establish the optimality of 
the designs algebraically. Instead, we will examine the status of the optimum designs n�D, n�A and 
n��A obtained in Sec. 2 in the entire class numerically.

Kiefer and Wolfowitz (1960) first established the equivalence between D- and G-optimality cri
teria. (For different optimality criteria see Silvey (1980), Pukelsheim (1993)). Fedorov (1971) 
extended it to linear optimality criteria. Finally, Kiefer (1974) generalized it to any concave func
tion of the moment/information matrix.

Suppose that UðMÞ is a real valued function defined on the moment matrix MðnÞ for the 
model gðxÞ ¼ f ðxÞ0h: Then the equivalence theorem can be stated as follows:

Theorem 3.1. If UðMÞ is a concave function of MðnÞ, then n� is U-optimal if and only if 
FðMðn�Þ, f ðxÞf ðxÞ0Þ � 0 for all x 2 X:

If n� is discrete with finite support then FðMðn�Þ, f ðxÞf ðxÞ0Þ ¼ 0, at all the support points. 
Here FðM1, M2Þ stands for the Fr �e chet derivative of M1 in the direction M2:

For details see Silvey (1980). In particular, for the D- and A-optimality criteria, the equivalence 
theorem can be stated as follows (see Fedorov (1972)): 

The equivalence theorem for D-optimality criterion:  

Theorem 3.2. The following assertions:

i. n� minimizes DetðM−1ðn�ÞÞ

ii. n� minimizes max
x

kðxÞf 0ðxÞM−1ðn�Þf ðxÞ
iii. max

x
kðxÞf 0ðxÞM−1ðn�Þf ðxÞ¼p

are equivalent, where p is the number of parameters in the model. Any linear combination of 
designs satisfying (i)-(iii) also satisfies (i)-(iii).

The equivalence theorem for A-optimality criterion:

Theorem 3.3. The following assertions:

i. n� minimizes tr:ðM−1ðn�ÞÞ

ii. n� minimizes max
x

kðxÞf 0ðxÞM−2ðn�Þf ðxÞ
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iii. max
x

kðxÞf 0ðxÞM−2ðn�AÞf ðxÞ¼tr:ðM−1Þ

are equivalent. Any linear combination of designs satisfying (i)-(iii) also satisfies (i)-(iii).
Using the equivalence theorem, Kiefer (1961) established the D-optimality of the (q,2) simplex 

design. Afterwards, several authors used this theorem to establish the optimality/non-optimality 
of designs in different settings. Pal and Mandal (2007) used equivalence theorem for the problem 
of estimation of some specific non-linear functions in mixture models.

3.1. D-optimum designs

In Sec. 2, it is shown that the design n�D which puts equal weight a=q at each of the vertex points 
and a weight ð1 − aÞ=Cðq, 2Þ at each of the midpoints of the edges with a given by (2.11) is D- 
optimum in D0: Now the error function (2.3) assumes two distinct values namely r2

1 at the vertex 
points and r2

2 at the midpoints of the edges.
After a little algebra, we have

dðx, n�DÞ ¼ f 0ðxÞM−1ðn�DÞf ðxÞ ¼ p 4r2
1

X

i
x2

i xi −
1
2

� �2
( )

þ 16r2
2

X

i<j
x2

i x2
j

� �
2

4

3

5: (3.1) 

Thus, n�D is D-optimum, iff kðxÞdðx, n�DÞ � p or equivalently

kðxÞ 4r2
1

X

i
x2

i xi −
1
2

� �2
( )

þ 16r2
2

X

i<j
x2

i x2
j

� �
2

4

3

5 � 1 (3.2) 

for all x 2 X : It is clearly seen that equality holds at the support points of the design n�D: Thus to 
establish the optimality of n�D in the entire class, it is enough to show that (3.2) holds for any 
arbitrary point of X , other than the support points. However, since it is difficult to establish alge-
braically, we have examined it computationally for different values of q.

For q¼ 2, because of the constraint x1 þ x2 ¼1, the condition (3.2) can be expressed in terms 
of a single variable x1:

4 x2
1 x1 −

1
2

� �2

þ 1 − x1ð Þ
2 x1 −

1
2

� �2
( )

exp 1 − ðx2
1 þ ð1 − x1Þ

2
Þ

n o

þ16 x2
1ð1 − x1Þ

2
n o

exp
1
2

− ðx2
1 þ ð1 − x1Þ

2
Þ

� �

� 1

(3.3) 

From Figure 1a, it is clearly seen that the left hand side of (3.3) attains its maximum value 1 
at the three points x1 ¼ 0, 1/2, 1 which validates (1,0), (1/2, 1/2), and (0,1) as the support points 
of the design and n�D is indeed D-optimum in the entire class of competing designs in X :

Similarly, for q ¼ 3, because of the constraint 
P

xi ¼ 1, the left hand side of (3.2) can be 
expressed as a function of two variables x1 and x2:

4 x2
1 x1 −

1
2

� �2

þ x2
2 x2 −

1
2

� �2

þ 1 − x1 − x2ð Þ
2 x1 þ x2 −

1
2

� �2
( )

exp 1 − ðx2
1 þ x2

2 þ ð1 − x1 − x2Þ
2
Þ

n o

þ16 x2
1x2

2 þ ð1 − x1 − x2Þ
2
ðx2

1 þ x2
2Þ

n o

exp
1
2

− ðx2
1 þ x2

2 þ ð1 − x1 − x2Þ
2
Þ

� �

� 1

(3.4) 

Here again, equality holds in (3.4) at the support points of n�D, which can be seen from
Figure 1b also. Moreover, at all other points besides the support points, value of the left hand 

side of (3.4) is strictly less than 1 which guarantees the optimality of n�D in the entire class.
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Similarly, for q ¼ 4, because of the constraint 
P

xi ¼ 1, the left hand side of (3.2) can be 
expressed as a function of three variables x1, x2 and x3:

4 x2
1 x1 −

1
2

� �2

þ x2
2 x2 −

1
2

� �2

þ x2
3 x3 −

1
2

� �2

þ 1 − x1 − x2 − x3ð Þ
2 x1 þ x2 þ x3 −

1
2

� �2
( )

exp 1 − ðx2
1 þ x2

2 þ x2
3 þ ð1 − x1 − x2 − x3Þ

2
Þ

n o

þ 16 x2
1ðx

2
2 þ x2

3Þ þ x2
2x2

3 þ ð1 − x1 − x2 − x3Þ
2
ðx2

1 þ x2
2 þ x2

3Þ

n o

exp
1
2

− ðx2
1 þ x2

2 þ x2
3 þ ð1 − x1 − x2 − x3Þ

2
Þ

� �

� 1

(3.5) 

From (3.5), it is clear that kðxÞdðx, n�DÞ is maximum at the support points of n�D, the (q,2) sim-
plex design, with the maximum value p, the number of parameters and it is strictly less than the 
upper bound at all other points (see Appendix Table A1). Hence we conclude that the design n�D 
is D-optimum in the whole class for q ¼ 4 also.

Remark 3.1. The design which is D-optimum for the estimation of the parameters of the model 
(2.5) is also D-optimum for the estimation of the parameters of the model (2.2). This is due to 
invariance of the D-optimality criterion with respect to the nonsingular transformation to the 
parameter vector.  

Remark 3.2. Since kðxÞr2
i ¼ exp −ðx − x0Þ

0
ðx − x0Þ

� �
exp ðxi − x0Þ

0
ðxi − x0Þ

� �
¼ exp ð−x0xþ 2x0x0 

−x00x0Þ exp ðx0ixi − 2x0ix0 þ x00x0Þ¼ exp −x0x − 1
q

� �
exp x0ixi þ

1
q

� �
¼ exp ð−x0xÞ exp ðx0ixiÞ; i ¼ 1, 2, 

instead of (2.1), one assumes the error function

VðyjxÞ ¼
1

kðxÞ
¼ exp ðx0xÞ, (3.6) 

the necessary and sufficient condition of the equivalence theorem remains same for any arbitrary 
q. Hence the derived designs are D-optimum in the entire class for the error function (3.6) also.

Figure 1. (a) Showing the graph of hðx1Þ ¼
kðxÞdðx,n�DÞ

3 for x1 2 ½0, 1� (b) Showing the graph of hðx1, x2Þ ¼
kðxÞdðx,n�DÞ

6 
for x1, x2 2 ½0, 1�:
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Remark 3.3. In general, it is difficult to establish the optimality of the derived designs in the 
entire class using equivalence theorem algebraically. Here we have checked the optimality of 
the derived designs in the whole class numerically for q¼ 2, 3 and 4. It may be conjectured that 
the design n�D is D-optimum in the entire class for all q. 

3.2. A-optimum design 

Here again, as in the case of D-optimality criterion, first A-optimum design is derived in the class 
of (q,2) simplex design under heteroscedastic error variance (3.1). Next, optimality of the derived 
design is investigated in the entire class via equivalence theorem. The information matrix M(n�A) 
of the design n�A for the model (2.5) is given in (2.9). 

In Sec. 2, we have observed that n�A is A-optimum in D0 when a ¼ a0A, given by (2.13). To 
check optimality of the derived design in the entire class we have to verify it through equivalence 
theorem which, after a brief algebra, reduces to

kðxÞ
4qr2

1
a

� �2 X

i
x2

i xi −
1
2

� �2
( )

þ
16Cðq, 2Þr2

2
1 − a

� �2 X

i<j
x2

i x2
j

� �
2

4

3

5 � 4q2ðr1 þ ðq − 1Þr2Þ
2
: (3.7)  

For a ¼ a0A, (3.7) simplifies to

kðxÞ 4r2
1

X

i
x2

i xi −
1
2

� �2
( )

þ 16r2
2

X

i<j
x2

i x2
j

� �
2

4

3

5 � 1: (3.8)  

Since (3.8) is same as (3.2), we conclude that n�A is A-optimum in the entire class 
for q ¼ 2, 3, 4:

Remark 3.4. As in Remark 3.3, it may be conjectured that the design n�A is A-optimum in the 
entire class for q >4.  

Remark 3.5. As Remark 3.1, it is not difficult to show that instead of (2.3), one assumes the error 
function (3.6), the necessary and sufficient condition of the equivalence theorem remains same 
for any arbitrary q. Hence the derived designs are A-optimum in the entire class for both the 
error functions (2.3) and (3.6).  

Remark 3.6. Unlike D-optimality, the design which is A-optimum for the estimation of the 
parameters of the model (2.5) is not A-optimum for the estimation of the parameters of the 
model (2.2). It has been seen in Sec. 2 that the optimum weights at the support points differ in 
the two situations (cf. equations (2.13) and (2.18)). It is to be noted that the condition mentioned 
in the equivalence theorem correspond to the parameters of the model (2.5). If one is interested 
in establishing the A-optimality for the estimation of the parameters of the model (2.2), the con-
dition (3.7) is to be modified accordingly and it takes the form

kðxÞf 0ðxÞM−1ðn��A ÞL
0LM−1ðn��A Þf ðxÞ � tr:ðLM−1ðn��A ÞL

0Þ ¼ tr:ðM−1ðn��A ÞL
0LÞ (3.9) 

which can equivalently be expressed as

kðxÞ
4qr2

1
a

� �2

f 01ðxÞ
4q − 7

4
Iq þ Jq

� �

f1ðxÞ þ
8qðq − 1Þr2

2
1 − a

� �2

f 02ðxÞf2ðxÞ

"

−
64q2ðq − 1Þ
að1 − aÞ

r2
1r

2
2f 01ðxÞP

0f2ðxÞ� � tr: M−1ðn��A ÞL
0L

� �
,

(3.10) 

where f ðxÞ ¼ ðf 01ðxÞ, f 02ðxÞÞ
0
:
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In Sec. 2, we have observed that n��A is A-optimum in D0 when a ¼ a�0A, given by (2.18). To 
check optimality of the derived design in the entire class we have to verify it through equivalence 
theorem which, after a brief algebra, reduces to 

4kðxÞ r2
1

Xq

i¼1
x2

i xi −
1
2

� �2

þ
8r2

1
4q − 3

Xq

i<j
xixj xi −

1
2

� �

xj −
1
2

� �

þ 4r2
2

X

i<j
x2

i x2
j

2

4

−
8r1r2

ð4q − 3Þ1=2

Xq

i¼1
x2

i xi −
1
2

� �

1 − xið Þ� � 1

(3.11) 

We denote left hand side of (3.11) by gðx1, x2, :::, xq−1Þ:

Here again, for q ¼ 2, equality holds in (3.11) at the support points of n��A , which can be seen 
from Figure 2a. Moreover, at all other points besides the support points, value of the left hand 
side of (3.11) is strictly less than 1 which guarantees the optimality of n��A in the entire class. 
However for q ¼ 3, we have seen from Figure 2b, value of the left hand side of (3.11) is greater 
than 1 at some other points besides the support points of n��A : Hence for q ¼ 3, n��A is not A-opti-
mum in the entire class which is also true for the homoscedastic case (See Galil and Kiefer 
(1977)). Also we have numerically checked that for q ¼ 4, design n��A is not A-optimum in the 
entire class (see Appendix Table A1).

4. Robustness

In this section, we shall study the robustness of the usual D- and A-optimum designs under 
homoscedastic error variance, when the true error variance is heteroscedastic. For the D-optimality 
criterion, we have observed that the weights at the support points are independent of the form of 
error function so that the D-optimum designs are same for both the homoscedastic and heterosce-
dastic error variances. However for the A-optimality criterion the optimum weights are functions of 
the error function. To study the robustness of the optimum design under homoscedasticity when 
the error variance is really heteroscedastic one may use, as a measure of robustness, the ratio of the 
criterion functions of the two designs namely

Figure 2. (a) Showing the graph of gðx1Þ for x1 2 ½0, 1� (b) Showing the graph of gðx1, x2Þ for x1, x2 2 ½0, 1�:
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Rn0jn
�
A
¼

tr:ðM−1ðn�AÞÞ

tr:ðM−1ðn0ÞÞ
: (4.1) 

which gives an indication of the performance of the design n0, the A-optimum design under 
homoscedasticity, against the design n�A for variation in error function.

Under homoscedasticity (i.e. r2
1 ¼ r2

2 ¼ 1), tr:ðM−1ðnÞÞ ¼
4q2

a
þ

4q2ðq−1Þ2

1−a 
and tr:ðM−1ðnÞÞ is min-

imum when a ¼ 1
q : Hence tr:ðM−1ðn0ÞÞ ¼ 4q3ðr2

1 þ ðq − 1Þr2
2Þ: Now from (4.1),

Rn0jn
�
A
¼

4q2ðr1 þ ðq − 1Þr2Þ
2

4q3ðr2
1 þ ðq − 1Þr2

2Þ
¼
ðr1 þ ðq − 1Þr2Þ

2

qðr2
1 þ ðq − 1Þr2

2Þ
: (4.2) 

However we have seen in the previous section that A-optimum designs under heteroscedastic 
error variance do not exist for all q. Hence we compute (4.2) for different value of q and repre-
sent these in Table 1.

It is clearly seen that Rn0jn
�
A
< 1 for all q as expected but very close to 1.

Remark 4.1. Sensitivity of the criterion function (4.1) can be increased by slightly modifying the 
error function (error) to

VðyjxÞ ¼
1

kðxÞ
¼ exp ðdðx − x0Þ

0
ðx − x0ÞÞ (4.3) 

where d ð> 0Þ is a constant. Then the robustness of n0 can be examined for variation in d: From 
Figure 3, it is clear that the value of the robustness criterion (4.1) is decreasing in d for q ¼ 2:
Hence though the A- optimum designs under the homoscedastic set-up is robust with the error 
function assumed but is very sensitive with changes in the value of d: Since it involves lot of 
numerical computations, we have not pursued it further. One may also be interested in 

Figure 3. Showing the graph of Rn0 jn
�
A
¼ RðdÞ for q ¼ 2:

Table 1. The values of Rn0 jn
�
A 

for different values of qð6¼ 3Þ:

q 2 4 5 6 7 8 9 10

Rn0 jn
�
A

0.9848 0.9697 0.9689 0.9695 0.9706 0.9720 0.9733 0.9746
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estimating d in addition to the estimation of the regression coefficients optimally (cf. Atkinson 
and Cook(1995)). It is intended to communicate it in a subsequent paper.

5. Concluding remarks

Optimum designs have been derived for the first and second degree models in a mixture experi-
ment with D- and A-optimality criteria when the error variance is heteroscedastic. Since it is dif-
ficult to find optimum design for arbitrary form of error variance, we have assumed a specific 
form namely the exponential form of the error variance. It is seen that the support points are 
same as that in the homoscedastic case. Though the weights at the support points are same as in 
the homoscedastic case for D-optimality criterion but they differ for the A-optimality criterion. It 
may also be observed that the D-optimal design is independent of the form of the error function. 
It is seen that the weights are sensitive to changes in the multiplying factor in the exponent of 
the error function in terms of robustness of the design relative to the homoscedastic case. The 
problem for other choices of error functions remains open. One can pursue by extensive numer-
ical computations to find optimum design in such cases.
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Appendix 

Table A1. Table showing the values of dðx,n�Þ
10 and gðx1, x2, x3Þ for q ¼ 4:

(a)

x1 x2 x3 x4

dðx, n�Þ
10

0 0 0 1 1
0 0 0.25 0.75 0.7237469
0 0 0.5 0.5 1
0 0 0.75 0.25 0.7237469
0 0 1 0 1
0 0.25 0 0.75 0.7237469
0 0.25 0.25 0.5 0.6957787
0 0.25 0.5 0.25 0.6957787
0 0.25 0.75 0 0.7237469
0 0.5 0 0.5 1
0 0.5 0.25 0.25 0.6957787
0 0.5 0.5 0 1
0 0.75 0 0.25 0.7237469
0 0.75 0.25 0 0.7237469
0 1 0 0 1
0.25 0 0 0.75 0.7237469
0.25 0 0.25 0.5 0.6957787
0.25 0 0.5 0.25 0.6957787
0.25 0 0.75 0 0.7237469
0.25 0.25 0 0.5 0.6957787
0.25 0.25 0.25 0.25 0.6138220
0.25 0.25 0.5 0 0.6957787
0.25 0.5 0 0.25 0.6957787
0.25 0.5 0.25 0 0.6957787
0.25 0.75 0 0 0.7237469
0.5 0 0 0.5 1
0.5 0 0.25 0.25 0.6957787
0.5 0 0.5 0 1
0.5 0.25 0 0.25 0.6957787
0.5 0.25 0.25 0 0.6957787
0.5 0.5 0 0 1
0.75 0 0 0.25 0.7237469
0.75 0 0.25 0 0.7237469
0.75 0.25 0 0 0.7237469
1 0 0 0 1
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(b)

x1 x2 x3 x4 gðx1, x2, x3Þ

0 0 0 1 1
0 0 0.25 0.75 0.4460669
0 0 0.5 0.5 1
0 0 0.75 0.25 0.4460669
0 0 1 0 1
0 0.25 0 0.75 0.4460669
0 0.25 0.25 0.5 1.0163991
0 0.25 0.5 0.25 1.0163991
0 0.25 0.75 0 0.4460669
0 0.5 0 0.5 1
0 0.5 0.25 0.25 1.0163991
0 0.5 0.5 0 1
0 0.75 0 0.25 0.4460669
0 0.75 0.25 0 0.4460669
0 1 0 0 1
0.25 0 0 0.75 0.4460669
0.25 0 0.25 0.50 1.0163991
0.25 0 0.50 0.25 1.0163991
0.25 0 0.75 0 0.4460669
0.25 0.25 0 0.5 1.0163991
0.25 0.25 0.25 0.25 1.4218662
0.25 0.25 0.5 0 1.0163991
0.25 0.5 0 0.25 1.0163991
0.25 0.5 0.25 0 1.0163991
0.25 0.75 0 0 0.4460669
0.5 0 0 0.5 1
0.5 0 0.25 0.25 1.0163991
0.5 0 0.5 0 1
0.5 0.25 0 0.25 1.0163991
0.5 0.25 0.25 0 1.0163991
0.5 0.5 0 0 1
0.75 0 0 0.25 0.4460669
0.75 0 0.25 0 0.4460669
0.75 0.25 0 0 0.4460669
1 0 0 0 1
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