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ABSTRACT
We propose to discuss at length several examples from standard text
books. All of these examples deal with analysis of covariance (ANCOVA)
models and related analyses of data. We intend to capitalize on our
understanding of optimal covariate designs (OCDs) in different ANCOVA
models and re-visit these examples with a view to suggest optimal/
nearly optimal designs for estimation of the covariate parameter(s). As
we will see, for some examples our task is very much routine but for
others, it is indeed a highly non trivial exercise.

We intent to cover a total of six examples—divided in two parts. This
is Part I—dealing with two examples.

1. Introduction and preliminaries

Most standard text books in the area of linear models and design of experiments provide
discussions on what are known as analysis of covariance (ANCOVA) models applied to
completely randomized designs (CRDs), randomized block designs (RBDs), and latin square
designs (LSDs). It is well-accepted practice in experimental design contexts to use one or
more available andmeaningful covariates together with local control to reduce the experimen-
tal error. Such a model comprises of three components: local control parameter(s) (if any),
“treatment” parameters, and the covariate parameter(s), apart from the error. This generates
a family of “covariate models”—serving as a “blend” of “regression models” (in the absence
of treatment parameters) and “varietal design models” (in the absence of covariates). These
are the so-called ANCOVAmodels. Generally, for such models, emphasis is given on analysis
of the data. Inference-related procedures are fairly routine exercises and are well discussed in
the texts.

Let the following covariate model be considered:

Y = Xθ + Zγ + e (1)

whereYn×1 denotes the observation vector,Xn×p denotes the coefficientmatrix for the analysis
of variance (ANOVA) effects parameters θ′ = (θ1, θ2, . . . , θp) and Zn×c = (zi j) denotes the
matrix of the values given to c covariates viz., Z = (z1, z2, . . . , zc). In the above, Z is also
called the covariate design matrix of the vector of covariate effects γ = (γ1, γ2, . . . , γc)

′. As
usual, e is the random error component with E(e) = 0, Disp(e)=σ 2In, where In is the identity
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matrix of order n. We represent the above set-up by the triplet:(
Y,Xθ + Zγ, σ 2In

)
(2)

Here the observations are uncorrelated and variances of each of the observations are equal
to σ 2. This is to note that the information matrix with respect to model (2) under design d is
given by σ−2Id(η), where

Id(η) =
(
X′X X′Z
Z′X Z′Z

)
(3)

and η′ = (θ′, γ ′). The information matrix of γ is given by

σ−2Id(γ ) = Z′Z − Z′X(X′X)−X′Z (4)

where (X′X)− is a generalized inverse of X′X satisfying

X′X(X′X)−X′X = X′X

(cf. Rao, 1973, p. 24). It is evident that Z′X(X′X)−X′Z is a positive semi-definite matrix.
Therefore, from (4), it follows that

σ−2Id(γ ) ≤ Z′Z (5)

in the Loewner order sense (vide Pukelsheim, 1993) where for two non negative definite
matrices A and B, A is said to dominate B in the Lowener order sense if A − B is a non
negative definite matrix.

Equality in (5) is attained whenever

X′Z = 0 (6)

If Z satisfies (6), then ANOVA effects and covariate effects are orthogonally estimated. Again
under condition (6), the information matrix Id(γ) reduces to Id(γ) = Z′Z. It is also tacitly
assumed that all covariate effects parameters are estimable—though the parameters in the
other part viz., varietal effects parameters, and block effects parameters are not necessarily all
estimable.

For the covariates, it is assumedwithout loss of generality, the (location-scale)-transformed
version: zi j ∈ [−1, 1]; ∀i, j; (cf. Das et al., 2003).

Then the covariate effects are estimated with the maximum efficiency if and only if

Z′Z = nIc (7)

along with (6).
The designs allowing the estimators with theminimum variance are called globally optimal

designs (cf. Shah and Sinha, 1989, p. 143). Henceforth, we shall only be concerned with such
optimal estimation of regression parameters and by optimal covariate design, to be abbreviated
as OCD hereafter, we shall only mean globally optimal design, unless otherwise mentioned.

In this paper, we deal with a number of application areas wherein optimality study in the
context of uses of covariates has a natural scope for enhancing the experimental results. In this
part, we work on two motivating examples and provide details of the computations. While
working on both the parts, we have derived inspiration from Sinha (2009).

Inference-related procedures are fairly routine exercises and are well discussed in the texts.
We are all well aware of three basic considerations in the context of design of experiments:
randomization, replication, and local control. Randomization is a technique used as much
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Table . Original allocation of patients based on covariate values (patient serial number, covariate value).

. Treatment A: (P, ), (P, ), (P, ), (P, ), (P, ), (P, ), (P, ),
(P, ), (P, ), (P, )

. Treatment D: (P, ), (P, ), (P, ), (P, ), (P, ), (P, ), (P, ),
(P, ), (P, ), (P, )

. Control F: (P, ), (P, ), (P, ), (P, ), (P, ), (P, ), (P, ),
(P, ), (P, ), (P, )

as feasible and possible to ensure the statistical validity of inference procedures. Unfortu-
nately, however, in most settings, an experimenter is not in a position to apply randomization
(and hence to derive benefits out of it) since a satisfactory and valid application of this tool
becomes prohibitive. In the context of covariates models, it is well known that the same phe-
nomenon prevails. We depend largely on distributional assumptions such as normality with
homoscedastic errors. We will not reiterate this limitation of our study any further.

2. Examples: Eye-openers

At times there lies a (possibly huge) potential for improving the experimental results by suit-
ably classifying/re-classifying the existing experimental units through a study of the associated
covariate values or by first suitably choosing the covariate values from a larger lot and then,
hopefully, identifying the associated experimental units from a larger pool.

In the following, we cite a motivating example from Snedecor and Cochran (1989, p. 377),
suitably presented to explain our point.

Example 1. It relates to leprosy study mentioned in Snedecor and Cochran’s book (1989,
p. 377). The point we wish to make is that there may be ample scope of improvement in
the efficiency of the estimates for the covariates’ parameters if we have a “free” hand in the
recruitment of the patients and if a “pool” is made available to us. There are thirty patients
for the study and there are three drugs (two antibiotics A and D, and one control F) to be
compared - each to be applied to ten patients. To explain our point, the basic design is taken
to be a CRD. Optimality theory is well established. Vide Troya Lopes (1982) and Das et al.
(2003).We display the original treatment-patient allocation design in Table 1. Also we display
in Table 2 the optimal scheme of recruitment of the patients in terms of their possession of
original pre-treatment score (count of bacilli)—under the supposition that we have a “free
choice” of the patients from a conceivably larger pool. It is a routine task to assert that as
against the given patients’ ad-hoc recruitment scheme in Table 1, the above optimal scheme
in Table 2 provides more than 300% gain in efficiency towards estimation of the covariate
parameter. Even with the “given” pool of 30 patients as in Table 1, a suitable re-allocation
of the patients across the three treatments, as indicated in Table 3, would have provided
12% gain in efficiency against the “adhoc” allocation. In the study of regression designs (or
covariate designs) involving a quantitative regressor or quantitative covariate, say z∗ with its

Table . Proposed optimal plan (dopt (say)) for recruitment of patients based on pre-treatment score in
actual units (patient serial number, covariate value).

. Treatment A: (P, ), (P, ), (P, ), (P, ), (P, ), (P, ), (P, ),
(P, ), (P, ), (P, )

. Treatment D: (P, ), (P, ), (P, ), (P, ), (P, ), (P, ), (P, ),
(P, ), (P, ), (P, )

. Control F: (P, ), (P, ), (P, ), (P, ), (P, ), (P, ), (P, ),
(P, ), (P, ), (P, )
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Table . “Improved”allocation of patients based on given covariate values.

. Treatment A : (P, ), (P, ), (P, ), (P, ), (P, ), (P, ), (P, ),
(P, ), (P, ), (P, )

. Treatment D : (P, ), (P, ), (P, ), (P, ), (P, ), (P, ), (P, ),
(P, ),(P,), (P, )

. Control F : (P, ), (P, ), (P, ), (P, ), (P, ), (P, ), (P, ),
(P, ), (P, ), (P, )

natural range of variation as (a, b) with a < b or in a given context, data-driven range as
(z∗

min , z∗
max), we may make a linear transformation to z = 2(z∗−a)

(b−a) − 1 or z = 2(z∗−z∗min)

(z∗max−z∗min)
− 1.

This has two advantages. The range of variation of z is now [−1, 1] and a linear relation in
terms of z∗ gets transferred to a linear relation in terms of z. The standardized covariate z
is unit-free and it applies universally to all covariates with arbitrary units of measurements.
It is evident that based on data-driven range, both the extremes “+/−1” are attained by the
transformed covariate z. In applications, the code −1 (respectively, +1) is to be replaced by
z∗
min (respectively, z∗

max) which are “3” and “21” in the above example.

We will now carry out the non trivial exercise of arriving at the design indicated in
Table 3 as obtained through adequate re-allocation of the covariate values of the given pool
of 30 patients as in the given design in Table 1, to be denoted by d0. For the sake of complete-
ness, we display the allocation of covariate-values over the three treatments as in d0.

A : 3, 5, 6, 6, 8, 10, 11, 11, 14, 19
D : 5, 6, 6, 7, 8, 8, 8, 15, 18, 19
F : 7, 9, 11, 12, 12, 12, 13, 16, 16, 21

= d0, say

and the Z-scores are:

A : −1.00 −0.78 −0.67 −0.67 −0.44 −0.22 −0.11 −0.11 0.22 0.78
D : −0.78 −0.67 −0.67 −0.56 −0.44 −0.44 −0.44 0.33 0.67 0.78
F : −0.56 −0.33 −0.11 0.00 0.00 0.00 0.11 0.44 0.44 1.00

.

It follows that, in terms of the Z-scores (i.e., pre-treatment score (count of bacilli) ranging
in [−1, 1],

Id0 (η) =

⎛
⎜⎜⎝

10 0 0 −3.0000
0 10 0 −2.2222
0 0 10 1.0000

−3.0000 −2.2222 1.0000 8.8148

⎞
⎟⎟⎠

Routine computation yields: Information for γ (i.e., covariate parameter), Id0 (γ ) = 7.3210.
Towards an ‘improved’ allocation, we arrange the data of pre-treatment scores of all the 30

patients in ascending order: 3, 5, 5, 6, 6, 6, 6, 7, 7, 8, 8, 8, 8, 9, 10, 11, 11, 11, 12, 12, 12, 13, 14,
15, 16, 16, 18, 19, 19, 21.

Since Id0 (γ ) = 7.3210 and Idopt (γ ) = 30.00, the optimal scheme (d0) in Table 2 provides

more than 300% gain in efficiency (
Idopt (γ )−Id0 (γ )

Id0 (γ )
× 100% > 300%) towards estimation of the

covariate parameter. However, the design dopt “ignores” the given experimental units with
given covariate values and instead embarks on a fresh choice of experimental units with
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chosen z-values. This is a hypothetical situation to make us aware of improvements, if we
can act well in advance during the time of choice of experimental units.

Keeping the given experimental units with stated z-values, we now want to explore
the possibility of improving “information” on the covariate parameter by suitably relocating
the experimental units across different treatments. Now by using following algorithms, we
make an attempt to search for a design for which the information of γ is increased.

Algorithm 1

Step 1:We conveniently divide ordered Z-scores into three blocks. Block 1 consists of the first
nine observations of arranged data, i.e. (3, 5, 5, 6, 6, 6, 6, 7, 7); Block 2 consists of the next
12 observations, i.e. (8, 8, 8, 8, 9, 10, 11, 11, 11, 12, 12, 12); Block 3 consists of the last nine
observations (13, 14, 15, 16, 16, 18, 19, 19, 21).

Step 2: In block 1 we allocate the first three observations, i.e. (3, 5, 5) under Treatment A, the
next three observations, i.e. (6, 6, 6) under Treatment D and the last three observations, i.e.
(6, 7, 7) under Treatment F.

Step 3: In block 2 we allocate the first four observations, i.e. (8, 8, 8, 8) under Treatment D, the
next four observations, i.e. (9, 10, 11, 11) under Treatment F and the last four observations,
i.e. (11, 12, 12, 12) under Treatment A.

Step 4: In block 3we allocate the first three observations, i.e. (13, 14, 15) under Treatment F, the
next three observations, i.e. (16, 16, 18) under Treatment A and the last three observations,
i.e. (19, 19, 21) under Treatment D.
Hence we get the following arrangement:

Block 1 Block 2 Block 3
A 3, 5, 5 11, 12, 12, 12 16, 16, 18
D 6, 6, 6 8, 8, 8, 8 19, 19, 21
F 6, 7, 7 9, 10, 11, 11 13, 14, 15

= d1, say.

The information of γ from d1=Id1 (γ ) = 8.1852
Step 5: Start with d1. Consider the left block, i.e., Block 1. Permute the rows and generate 3!

= 6 options for this block, while keeping the middle and the right block intact. Work out
Id(γ ) for all the 6 options generated from the left block. Identify the best case scenario and
hold this intact while passing into the middle block. Here the best design is found to be d1.

Step 6: For the middle block, i.e., Block 2, we follow a similar step. Here the best design using
Step 6 is

Block 1 Block 2 Block 3
A 3, 5, 5 9, 10, 11, 11 16, 16, 18
D 6, 6, 6 8, 8, 8, 8 19, 19, 21
F 6, 7, 7 11, 12, 12, 12 13, 14, 15

= d2, say.

The information of γ for d2=Id2 (γ ) = 8.2.
Step 7: For the last block, i.e., Block 3, we again follow similar step. Ultimately we get d2 as the

best design.

We now consider other aspects towards improving d2.
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Algorithm 2
Here we consider three allocations:

(I) (ADF—DFA—FAD—ADF—DFA—FAD—ADF—DFA—FAD—ADF)
(II) (ADF—DFA—FAD—ADF—DFA—FAD—ADF—DFA—FAD—DFA)
(III) (ADF—DFA—FAD—ADF—DFA—FAD—ADF—DFA—FAD—FAD)
and the the designs are, respectively:

Block 1 Block 2 Block 3
A 3, 6, 7 8, 10, 11, 12 15, 16, 19
D 5, 6, 7 8, 8, 11, 12 13, 18, 19
F 5, 6, 6 8, 9, 11, 12 14, 16, 21

= d(I), say;

Block 1 Block 2 Block 3
A 3, 6, 7 8, 10, 11, 12 15, 16, 21
D 5, 6, 7 8, 8, 11, 12 13, 18, 19
F 5, 6, 6 8, 9, 11, 12 14, 16, 19

= d(II), say;

Block 1 Block 2 Block 3
A 3, 6, 7 8, 10, 11, 12 15, 16, 19
D 5, 6, 7 8, 8, 11, 12 13, 18, 21
F 5, 6, 6 8, 9, 11, 12 14, 16, 19

= d(III), say.

For the above three designs, Id(I)(γ ) = 8.2198, Id(II)(γ ) = 8.2148 and Id(III)(γ ) = 8.2148.
Algorithm 3
Wemay consider another allocation:

(AFD—FDA—DAF—AFD—FDA—FDA—AFD—DAF—FDA—AFD)

and the corresponding design is

Block 1 Block 2 Block 3
A 3, 6, 7 8, 10, 11, 12 14, 18, 19
D 5, 6, 6 8, 9, 11, 12 13, 16, 21
F 5, 6, 7 8, 8, 11, 12 15, 16, 19

= d3, say.

Here also Id3 (γ ) = 8.2198.
Heuristic search:

G1 G2 G3

A 3, 6, 6 9, 10, 11, 12 14, 18, 19
D 5, 6, 7 8, 8, 11, 12 15, 16, 19
F 5, 6, 7 8, 8, 11, 12 13, 16, 21

= d4, say.

This yields Id4 (γ ) = 8.2198 and d3 is equivalent to d4. Further, these are also equivalent to
dI in the sense of same information.

In the final analysis, we find that there is gain in efficiency (more than 12%) in the perfor-
mance of the design dI or d3, as against the original design d0. This is the design (dI or d3)
displayed in Table 3.

The purpose of Example 2 is to indicate a step-by-step procedure towards improved allo-
cation of a covariate design in the set-up of an RBD.

Example 2. We now elaborate on another example taken from Rao (1973, p. 291)—also to
be found in Scheffé (1999, p. 217)—suitably modified to suit our discussion. This essentially
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refers to an RBD with b = 5, v = 3. Here b stands for number of blocks and v stands for
number of treatments. In the literature, we find results at length on constructions of optimal
OCDs under RBD set-ups but mostly dealing with the “regular” cases viz., both b and v being
multiples of 4 so that Hadamard matrices exist (cf. Das et al., 2003; Rao et al., 2003). Here is
a notable deviation and we take this rare opportunity to discuss the example quite in details.

This study refers to 15 male and 15 female pigs with their initial weights used as values
of a single covariate. The blocks correspond to five pens and treatments correspond to three
levels of feeding with increasing proportions of protein. Here is the original allocation design
in Table 4.

We consider an alternative representation of the above data to give an insight into the allo-
cation problem (Table 5). Now one may consider the standard covariate model (ANCOVA)
for two-way RBD Pen× Treatment layout with a single covariate (initial weights of pigs) sep-
arately for females and males.

Under RBDANCOVAmodel with a single covariate, the standard expression for informa-
tion on γ

I(γ ) =
5∑

i=1

3∑
j=1

z2i j −
1
3

5∑
i=1

R2
i − 1

5

3∑
j=1

C2
j + G2

15

=
5∑

i=1

3∑
j=1

z2i j −
1
3

5∑
i=1

R2
i − 5

3∑
j=1

(z̄0 j − z̄00)2
(8)

Table . Given allocation design.

Pen Treatment Sex Initial weight

A F 
B F 

I C F 
C M 
B M 
A M 

B F 
C F 

II A F 
C M 
A M 
B M 

C F 
A F 

III B F 
B M 
C M 
A M 

C F 
A M 

IV B F 
A F 
B M 
C M 

B F 
A F 

V C F 
B M 
C M 
A M 

Data Source: Rao (), p.  and Scheffé (), p. .
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Table . Initial weight distribution as per allocation of pigs.

(a) FEMALE (b) MALE
Treatment Treatment

Pen A B C Totals Pen A B C Totals

         
         
         
         
         
Totals     Totals    

Table . Female.

Treatment

Pen A B C Totals

    
    
    
    
    
Totals    

where Ri is ith row total,Cj is jth column total, G is grand total, and z̄0 j = Cj/5, z̄00 = G/15.
The notations are standard andwe use γF and γM to, respectively, denote the covariate effect

for female and male pigs. These are routine computations and for the given allocation design
in Table 5, to be denoted by d0, Id0 (γF ) = 57.8667 and Id0 (γM) = 116.2667.

Our aim is to maximize the information of γF as well as γM given in (8) by properly allo-
cating the pigs in the two-way RBD layout for both female and male pigs. We will take up
the study for female pigs only and thereby concentrate on data in the relevant table. Note that
towards maximization of information, the row totals of the covariate values should be as close
as possible and the same is to hold true of the column totals. We start with the 5 × 3 table of
covariate values and proceed through the following steps:

Step 1: First we arrange the rows in three sets where the first set consists of the rows where
all the covariate values are equal; in the second set, we consider those rows where two of
the three covariate values are not equal and the last set consists of the rows where all the
covariate values are unequal. The arrangement is shown in Table 6.

Step 2:We select the first row of second set (i.e., Pen No. 2) and permute the covariate values
keeping the other rows fixed. Next we compute the information of γF under each permu-
tation. Then we choose the design in which the information of γF will be a maximum. We

Table . dF1.

Treatment

Pen A B C Totals

    
    
    
    
    
Totals    
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Table . A’s in ascending and B’s in descending orders.

Treatment

A B C Totals

  * 
  * 
  * 
  * 
  * 

do the same for the second row of the second set (i.e., Pen No. 4) keeping the other rows
of the new design intact. Similarly, we do the same for third set also (Pen No. 3 and 5).

Step 3:We repeat Step 2 until all column totals (CF j’s) are as close as possible toGF/3. Finally,
we get the design where the information of γF is a maximum with CF j’s are as close as
possible to GF/3. We denote it by dF1 and IdF1 (γF ) = 81.0667

Step 4: We arrange the initial weights under Treatment A in ascending order and the initial
weights under Treatment B in descending order. The arrangement is shown in Table 8.
Since the sum of the two entries in each of 5 rows are 78, 78, 78, 81, 76, we fill the entries
under Treatment C as 48, 33, 32, 32, 50. Then we get the design dF2 and here IdF2 (γF ) =
782.4.

For another option, we arrange the initial weights under Treatment A in ascending order
and the initial weights under Treatment C in descending order. The arrangement is shown in
Table 10.

Since the sum of the two entries in each of 5 rows are 80, 80, 74, 78, and 80, we fill the
entries under Treatment B as 37, 35, 48, 46, and 28. Then we get the design dF3 and here
IdF3 (γF ) = 817.0667.

Lastly we arrange the initial weights under Treatment B in ascending order and the initial
weights under Treatment C in descending order. The arrangement is shown in Table 12.

Table . dF2.

Treatment

A B C Totals

   
   
   
   
   

Totals    

Table . A’s in ascending and C’s in descending orders.

Treatment

A B C Totals

 *  
 *  
 *  
 *  
 *  
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Table . dF3.

Treatment

Pen A B C Totals

   
   
   
   
   

Totals    

Table . B’s in ascending and C’s in descending orders.

Treatment

Pen A B C Totals

 *   
 *   
 *   
 *   
 *   

Table . dF4.

Treatment

Pen A B C Totals

   
   
   
   
   

Totals    

Table . dF5.

Treatment

Pen A B C Totals

   
   
   
   
   

Totals    

Table . dF6.

Treatment

Pen A B C Totals

   
   
   
   
   

Totals    
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Table . dF7.

Treatment

Pen A B C Totals

   
   
   
   
   

Totals    

Table . dF8.

Treatment

Pen A B C Totals

   
   
   
   
   

Totals    

Since the sum of the two entries in each of 5 rows are 78, 83, 70, 78, and 80, we fill the
entries under Treatment A as 41, 30, 48, 46, and 32. Then we get the design dF4 and here
IdF4 (γG) = 838.4.

Now we start with dF4 and proceed with Step 1 and Step 2. Then we observe that dF4 is a
better design. Next we can improve over dF4 by interchanging the first element and the second
element under Treatment C and denote the design by dF5. Here IdF5 (γF ) = 843.7333.

Again we can improve dF5 by interchanging the second element and the third element
under Treatment B and we denote the design by dF6. Here IdF6 (γF ) = 845.0667.

We can further improve dF6 by interchanging the first element and the forth element under
Treatment A and denote the design by dF7. Here IdF7 (γF ) = 851.7333.

Lastly we improve dF7 by interchanging the third element and the forth element under
Treatment C and denote the design by dF8. Here IdF8 (γF ) = 853.7333.

Now we construct design dF9 by interchanging the third element under Treatment A and
the forth element under Treatment B of dF8. Here IdF9 (γG) = 846.5333 which is less than
IdF8 (γF ) even though column sums are more or less equal. We stop here and recommend
the design dF8 for use. Now we consider the “ideal” situation for female data where the row
sums are 117, 117, 117, 117, and 118 and column sums are 195, 195, 196, and GF = 586. In
this situation, I(γF ) = 870.5333. Therefore, the relative efficiency of dF8 = 98.07% whereas

Table  dF9.

Treatment

Pen A B C Totals

   
   
   
   
   

Totals    
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the relative efficiency of γF under design d0 is 6.6473%. The gain in efficiency of dF8 against
d0 for female pigs is 1375.35%.

The designs [dF1, dF2, dF3, dF4, dF5, dF6, dF7, dF8 and dF9] are shown respectively in Tables
7, 9, 11, 13, 14, 15, 16, 17 and 18.

For male pigs, the procedure is similar. Interested readers may work out the details.

3. Concluding remark

In Example 1, we undertook a study of a CRD model involving three treatments and
with 15 observations under each. This represents a non regular case and we elaborated on
the procedures to enhance the efficiency of covariates designs. In Example 2, we considered 5
blocks and three treatments and this is not amenable to usual study of optimal RBDs as is con-
sidered in Troya Lopes (1982) or in Das et al. (2003). We have elaborated the steps involved
and settled for nearly optimal covariate designs. We believe these exercises will be instruc-
tional to the experimenters in exploring the possibility of improved experimental designs.
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